首页> 外文OA文献 >Particle image velocimetry study of pulsatile flow in bi-leaflet mechanical heart valves with image compensation method
【2h】

Particle image velocimetry study of pulsatile flow in bi-leaflet mechanical heart valves with image compensation method

机译:图像补偿法研究双叶机械心脏瓣膜搏动血流的粒子图像测速

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

[[abstract]]Particle Image Velocimetry (PIV) is an important technique in studying blood flow in heart valves. Previous PIV studies of flow around prosthetic heart valves had different research concentrations, and thus never provided the physical flow field pictures in a complete heart cycle, which compromised their pertinence for a better understanding of the valvular mechanism. In this study, a digital PIV (DPIV) investigation was carried out with improved accuracy, to analyse the pulsatile flow field around the bi-leaflet mechanical heart valve (MHV) in a complete heart cycle. For this purpose a pulsatile flow test rig was constructed to provide the necessary in vitro test environment, and the flow field around a St. Jude size 29 bi-leaflet MHV and a similar MHV model were studied under a simulated physiological pressure waveform with flow rate of 5.21/min and pulse rate at 72 beats/min. A phase-locking method was applied to gate the dynamic process of valve leaflet motions. A special image-processing program was applied to eliminate optical distortion caused by the difference in refractive indexes between the blood analogue fluid and the test section. Results clearly showed that, due to the presence of the two leaflets, the valvular flow conduit was partitioned into three flow channels. In the opening process, flow in the two side channels was first to develop under the presence of the forward pressure gradient. The flow in the central channel was developed much later at about the mid-stage of the opening process. Forward flows in all three channels were observed at the late stage of the opening process. At the early closing process, a backward flow developed first in the central channel. Under the influence of the reverse pressure gradient, the flow in the central channel first appeared to be disturbed, which was then transformed into backward flow. The backward flow in the central channel was found to be the main driving factor for the leaflet rotation in the valve closing process. After the valve was fully closed, local flow activities in the proximity of the valve region persisted for a certain time before slowly dying out. In both the valve opening and closing processes, maximum velocity always appeared near the leaflet trailing edges. The flow field features revealed in the present paper improved our understanding of valve motion mechanism under physiological conditions, and this knowledge is very helpful in designing the new generation of MHVs.
机译:[[摘要]]颗粒图像测速(PIV)是研究心脏瓣膜血流的一项重要技术。先前关于人工心脏瓣膜周围血流的PIV研究具有不同的研究重点,因此从未提供完整心脏周期中的物理流场图像,这损害了它们的相关性,无法更好地理解瓣膜机制。在这项研究中,进行了数字PIV(DPIV)研究,提高了准确性,以分析完整心动周期中双叶机械心脏瓣膜(MHV)周围的搏动流场。为此目的,构建了脉动流动试验台以提供必要的体外试验环境,并在模拟的具有流速的生理压力波形下研究了圣裘德29号双叶MHV和类似MHV模型周围的流场为5.21 / min,脉搏速率为72次/ min。应用锁相方法控制瓣膜小叶运动的动态过程。应用了特殊的图像处理程序来消除由血液模拟液和测试部分之间的折射率差异引起的光学畸变。结果清楚地表明,由于存在两个小叶,瓣膜流导管被分成三个流道。在打开过程中,首先在存在正向压力梯度的情况下在两侧通道中形成流量。在打开过程的大约中间阶段,中央通道中的流量发展得很晚。在开放过程的后期,观察到了所有三个通道中的向前流动。在早期关闭过程中,首先在中央通道中产生了回流。在反向压力梯度的影响下,中央通道中的流动首先被扰动,然后被转换为反向流动。发现在中央通道中的逆流是瓣膜关闭过程中小叶旋转的主要驱动因素。阀门完全关闭后,阀门区域附近的局部流动活动会持续一段时间,然后逐渐消失。在瓣膜的打开和关闭过程中,最大速度始终出现在小叶后缘附近。本文揭示的流场特征增进了我们对生理条件下瓣膜运动机制的理解,这一知识对于设计新一代MHV非常有用。

著录项

  • 作者

    Shi, YB;

  • 作者单位
  • 年度 2008
  • 总页数
  • 原文格式 PDF
  • 正文语种 en-US
  • 中图分类

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号